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Abstract
Symmetry properties of the Green function in magnetic multilayers with non-
collinear magnetization of the layers are investigated on the basis of the transfer-
matrix method. The Green function symmetric with respect to permutation of
its arguments is constructed. It is shown how the boundary conditions can be
imposed on this Green function.

PACS numbers: 02.10.Ud, 02.30.Hq, 73.21.Ac

1. Introduction

Magnetic multilayered structures demonstrating giant magnetoresistance (GMR) [1] and
tunnelling magnetoresistance (TMR) [2] attract great attention due to their potential
applications and interesting physics. A fairly simple free-electron-like model is a promising
tool for investigating new phenomena in these structures [3–7]. In particular, transport
properties of the layered structures have attracted considerable attention. One of the frequently
used approaches to the calculation of transport properties is the Kubo linear response
formalism, which requires the construction of the Green function (GF) of the multilayer.

In systems with complicated geometry, the construction of the GF is a cumbersome task.
The one-electron GF must obey the Schrödinger equation with a delta-function source term.
The continuity condition on the GF and its first derivative at the interfaces must be fulfilled.
In addition, the geometry of the system implies some boundary conditions for the GF. On
the other hand, it is convenient to build the GF in such a way that it has certain symmetry
properties with respect to permutation of its arguments. The latter problem, therefore, has to
be solved for the GF, which is continuous at the interfaces and obeys the boundary conditions.
In the one-dimensional case, the GF can be chosen symmetric with respect to permutation of
its arguments: G(z, z′) = G(z′, z). However, as was noted in [8], this permutation symmetry
is not, in general, a property of the GF. Therefore, for each particular case the problem of GF
symmetry requires additional investigation.
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In a multilayered system with non-collinear magnetization, the GF is a 4 × 4 matrix [9]. A
way to construct the GF of a magnetic multilayer with non-collinear magnetization of the layers
was proposed in [10], using the so-called k‖ −z representation. The k‖ −z representation takes
the advantage of the k-space representation in the plane of the multilayer (k‖ is the transverse
wave vector), but uses a real space representation along the z-axis perpendicular to the plane of
the layers. The k‖ − z representation is especially convenient for the investigation of transport
properties. Special attention in [10] was paid to the matching of the GF at the interfaces.

In this paper, we investigate the symmetry of the GF with respect to permutation of its
arguments for magnetic multilayers with non-collinear magnetization using the transfer-matrix
method. We demonstrate how the boundary conditions can be imposed on this Green function.
The proposed method is a generalization of the well-known method of constructing the GF
for the second-order linear differential equation

y ′′(z) + q(z)y(z) = 0 (1)

Using two linearly independent solutions f1(z), f2(z) of this equation, the GF is given by

G(z, z′) = 1

W(f1, f2)

{
f1(z)f2(z

′), z > z′

f1(z
′)f2(z), z < z′,

(2)

where the Wronskian W(f1, f2) ≡ f ′
1(z)f2(z) − f1(z)f

′
2(z) does not depend on z. The GF

obeys the equation

∂2G(z, z′)
∂z2

+ q(z)G(z, z′) = δ(z − z′). (3)

This method is different from that proposed in [11], where the problem of surface Green
function matching was solved for an arbitrary number of interfaces.

2. Construction of the Green function

The Green function for a magnetic multilayer system with non-collinear magnetization in each
layer satisfies the following second-order ordinary differential equation [9]:

h̄2

2m

[(
∂2

∂z2
+

(
k

(n)
F

)2 − k2
‖ − E

(n)
0

) (
1 0
0 1

)
− E

(n)
1

(
cos θn sin θn

sin θn −cos θn

)]

×
(

G
↑↑
nm(z, z′) G

↑↓
nm(z, z′)

G
↓↑
nm(z, z′) G

↓↓
nm(z, z′)

)
=

(
δ(z − z′) 0

0 δ(z − z′)

)
, (4)

where n indexes the layer in which z lies, m indexes the layer in which z′ lies and k‖ is an
in-plane wave vector. θn is the angle between the x-axis (which is perpendicular to the z-axis)
and the magnetization within the nth layer. For non-magnetic layers, the value of θn can be
chosen arbitrarily. E

(n)
0 and E

(n)
1 determine the position of the bottom of the band in the nth

layer and the exchange splitting, respectively. For non-magnetic layers E
(n)
1 = 0. In the

following we will give the GF in units of h̄2

2m
(i.e., put h̄2

2m
= 1). We consider a multilayer

whose layers are numbered 0 to N from right to left with interfaces at z = c1, c2, . . . , cN .
If we define

G↑
nm(z, z′) ≡




G
↑↑
nm(z, z′)

W
↑↑
nm(z, z′)

G
↓↑
nm(z, z′)

W
↓↑
nm(z, z′)


 =




G
↑↑
nm(z, z′)

∂
∂z

G
↑↑
nm(z, z′)

G
↓↑
nm(z, z′)

∂
∂z

G
↓↑
nm(z, z′)


 (5)
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and

G↓
nm(z, z′) ≡




G
↑↓
nm(z, z′)

W
↑↓
nm(z, z′)

G
↓↓
nm(z, z′)

W
↓↓
nm(z, z′)


 =




G
↑↓
nm(z, z′)

∂
∂z

G
↑↓
nm(z, z′)

G
↓↓
nm(z, z′)

∂
∂z

G
↓↓
nm(z, z′)


 , (6)

then we can write equation (4) as two systems of four first-order ordinary differential equations:

(
I

∂

∂z
+ Ln

)
G↑

nm(z, z′) =




0
δ(z − z′)

0
0


 (7)

and

(
I

∂

∂z
+ Ln

)
G↓

nm(z, z′) =




0
0
0

δ(z − z′)


 . (8)

Here we have defined

Ln ≡




0 −1 0 0(
k

(n)
F

)2 − k2
‖ − E

(n)
0 − E

(n)
1 cos θn 0 −E

(n)
1 sin θn 0

0 0 0 −1

−E
(n)
1 sin θn 0

(
k

(n)
F

)2 − k2
‖ − E

(n)
0 + E

(n)
1 cos θn 0


 .

(9)

Note that both equations (7) and (8) differ only on the right-hand side.
Recall that for a system of the form

d�(z)

dz
+ L�(z) = f(z) (10)

the solution can be expressed in terms of a fundamental matrix F as follows:

�(z) = F(z)

∫ z

0
F−1(s)f(s) ds + F(z)h, (11)

where h is a column. Equations (7) and (8) constitute two 4 × 4 systems of the form (10) with

f↑(z, z′) =




0
δ(z − z′)

0
0


 , f↓(z, z′) =




0
0
0

δ(z − z′)


 . (12)

Thus, we can write the Green function solution in the form

G(z, z′) = F(z)

∫ z

0
(F(s))−1f(s, z′) ds + F(z)h(z′), (13)

where we choose h(z′) so that the Green function obeys the boundary conditions and has the
proper symmetry.
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To find a fundamental matrix for equations (7) and (8), we must first find a solution to the
corresponding homogeneous equation

(
I

∂

∂z
+ Ln

)
�(n)(z) =




0
0
0
0


 . (14)

There are four linearly independent solutions of equation (14). We can arrange these solutions
as the columns of a fundamental matrix for the operator

(
I ∂

∂z
+ Ln

)
. It can be easily seen by

using the ansatz

ϕ =




A1 eikz

ikA1 eikz

A2 eikz

ikA2 eikz


 , (15)

that a fundamental matrix is given by

�(n)(z) =




eik(n)
1 z cos θn/2√

2k
(n)
1

e−ik(n)
1 z cos θn/2√

2k
(n)
1

−eik(n)
2 z sin θn/2√

2k
(n)
2

−e−ik(n)
2 z sin θn/2√

2k
(n)
2

ik(n)
1 eik(n)

1 z cos θn/2√
2k

(n)
1

−ik(n)
1 e−ik(n)

1 z cos θn/2√
2k

(n)
1

−ik(n)
2 eik(n)

2 z sin θn/2√
2k

(n)
2

ik(n)
2 e−ik(n)

2 z sin θn/2√
2k

(n)
2

eik(n)
1 z sin θn/2√

2k
(n)
1

e−ik(n)
1 z sin θn/2√

2k
(n)
1

eik(n)
2 z cos θn/2√

2k
(n)
2

e−ik(n)
2 z cos θn/2√

2k
(n)
2

ik(n)
1 eik(n)

1 z sin θn/2√
2k

(n)
1

−ik(n)
1 e−ik(n)

1 z sin θn/2√
2k

(n)
1

ik(n)
2 eik(n)

2 z cos θn/2√
2k

(n)
2

−ik(n)
2 e−ik(n)

2 z cos θn/2√
2k

(n)
2




, (16)

where

k
(n)
1,2 =

√
2mEF

h̄2 − k2
‖ − 2m

h̄2

(
E

(n)
0 ± E

(n)
1

)
. (17)

Note that these solutions are defined for each layer and generally do not match at the interfaces.
Here we introduce a set of matrices F(n)(z) that do match at the interfaces. Any other
solution can be represented as a linear combination of the columns of equation (16), i.e.
F(n)(z) = �(n)(z)An. Then at the nth interface the matching of the F(n)(z) functions means

�(n−1)(cn)An−1 = �(n)(cn)An. (18)

Thus the matrices An are related by

An = (�(n)(cn))
−1�(n−1)(cn−1)An−1. (19)

Clearly the F(n)(z) constitutes a fundamental matrix for the operator in equations (7) and (8)
provided det[A(n)] �= 0.

The GF of the form (13) obeys equations (7) and (8) if

G↑(z, z′) =
{

F(z)
(
F−1

2 (z′) + h↑(z′)
)
, z > z′

F(z)h↑(z′), z < z′ (20)

and

G↓(z, z′) =
{

F(z)
(
F−1

4 (z′) + h↓(z′)
)
, z > z′

F(z)h↓(z′), z < z′ . (21)

Here we have written F−1
n (z′) for the nth column of the inverse matrix F−1 evaluated at z′.
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Now we attempt to write equation (20) in terms of the basic functions given in
equation (16). Suppose that z is in the nth layer and that z′ is in the mth layer. Then we
obtain, for z > z′,

G↑(z > z′) = F(z)
(
F−1

2 (z′) + h↑(z′)
)

= �(n)(z)A(n)
(
(�(m)(z′)A(m))−1

2 + h↑(z′)
)

= �(n)(z)(A(n)(A(m))−1)
(
(�(m)(z′))−1

2 + A(m)h↑(z′)
)

= �(n)(z)A(n)(A(m))−1(I + X(m))(�(m)(z′))−1
2 (22)

Here we mean for (�(m)(z′))−1
p the pth column of the inverse of �(m)(z′). In equation (22)

we postulated that A(m)h↑(z′) can be written as X(m)(�(m)(z′))−1
2 , where X(m) is a matrix that

is determined by the boundary and symmetry conditions. Using the same considerations for
both branches of equations (20) and (21) we can write the GF as follows:

G↑(z, z′) =
{
�(n)(z)A(n)(A(m))−1(I + X(m))(�(m)(z′))−1

2 , z > z′

�(n)(z)A(n)(A(m))−1X(m)(�(m)(z′))−1
2 , z < z′ , (23)

and

G↓(z, z′) =
{
�(n)(z)A(n)(A(m))−1(I + Y(m))(�(m)(z′))−1

4 , z > z′

�(n)(z)A(n)(A(m))−1Y(m)(�(m)(z′))−1
4 , z < z′ . (24)

In equation (24), Y plays the same role as X in equation (23).
If we define two auxiliary matrices

P1 =




0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


 , (25)

and

P2 =




0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0


 , (26)

then it is straightforward to see that

(�(n)(z))−1 = (P1�
(n)(z)P2)

T = (
PT

1 �(n)(z)PT
2

)T
. (27)

It is then a simple exercise to show that

(�(m)(z′))−1
2 = P2(�

(m)(z′))T1
(�(m)(z′))−1

4 = P2(�
(m)(z′))T .

3

(28)

Here we mean for (�(m)(z′))Tp the pth column of the transpose of �(m)(z′). The relations (28)
show that each fundamental matrix �(n)(z) differs from a symplectic matrix only by a constant
multiplier, namely

(
1+i√

2

)
.

3. Symmetry of the Green function

We are looking for a solution of equation (4) that is symmetric with respect to permutation of
the arguments:

Gσσ ′
nm (z, z′) = Gσ ′σ

mn (z′, z). (29)
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For diagonal elements of the GF this implies

G↑↑
nm(z, z′) = G↑↑

mn(z
′, z). (30)

For z > z′ we have G
↑↑
nm(z > z′) = G

↑↑
mn(z

′ < z). Since G↑↑ is the first element of equation (23)
we obtain

4∑
j,k=1

�
(n)
1j (z)(T(nm)(I + X(m))P2)jk�

(m)
1k (z′) =

4∑
j,k=1

�
(m)
1k (z′)(T(mn)X(n)P2)kj�

(n)
1j (z). (31)

Here we have denoted

A(n)(A(m))−1 = T(nm) (32)

which is known as the transfer matrix. It is easily seen from equation (31) that

T(nm)(I + X(m))P2 = (T(mn)X(n)P2)
T . (33)

An equivalent derivation for the symmetry of the ↓↓ component leads to

T(nm)(I + Y(m))P2 = (T(mn)Y(n)P2)
T . (34)

For non-diagonal elements of the GF equation (29) forces

G↓↑
nm(z, z′) = G↑↓

mn(z
′, z). (35)

This implies a symmetry relationship between the third element of equation (5) and the first
element of equation (6). That is

4∑
j,k=1

�
(n)
3j (z)(T(nm)(I + X(m))P2)jk�

(m)
1k (z′) =

4∑
j,k=1

�
(m)
1k (z′)(T(mn)Y(n)P2)kj�

(n)
3j (z). (36)

Thus we see that

T(nm)(I + X(m))P2 = (T(mn)Y(n)P2)
T . (37)

Comparing equations (37) and (33), we find that Y(n) = X(n).
Note that using equation (19) it can be shown that

(T(nm))T = P2T(mn)P2. (38)

With equation (38) we can write equation (37) as

−P2(I + (X(m))T )P2T(mn)P2 = T(mn)X(n)P2 ⇒ X(n) = −T(nm)P2(I + (X(m))T )P2T(mn). (39)

where we have used the fact that

(T(mn))−1 = T(nm). (40)

In particular we may take m = 0 to obtain

X(n) = −T(n0)P2(I + (X(0))T )P2T(0n) = −I − T(n0)P2(X(0))T P2T(0n). (41)

Thus, we can express all the matrices X(n) in terms of a single matrix X(0). By setting n = 0
in equation (41), we find that since T(00) = I, X(0) must satisfy

X(0) + P2(X(0))T P2 = −I. (42)

From equation (42) it is easy to see that X(0) has the following form:

X(0) =




− 1
2 + α x12 x13 x14

x21 − 1
2 − α x23 x24

−x24 x14 − 1
2 + β x34

x23 −x13 x43 − 1
2 − β


 , (43)

where xij , α and β are arbitrary complex numbers.
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4. Boundary conditions

The boundary conditions are determined by the geometry of the system. Here we show how
the boundary conditions can be imposed for a multilayer, which is infinite in the z-direction.
A wide class of problems deal with diffusive scattering. One way to take into account the
diffusive scattering is to describe it via an effective complex potential, like, for instance, a
coherent potential. As a consequence the wave vectors (17) acquire a positive imaginary part
[3], resulting in a vanishing GF for |z − z′| → ∞. This boundary condition implies that the
GF can only contain exponentials of the form exp[ik(z − z′)] for z > z′ in the right outer layer
and exp[−ik(z − z′)] for z < z′ in the left outer layer.

In the following we will consider the solution for G↑. The derivation of G↓ is completely
equivalent. From equation (22) we see that for

G↑(z > z′) = �(n)(z)A(n)(A(0))−1(I + X(0))(�(0)(z′))−1
2 (44)

to meet this condition (I + X(0)) must have the second and fourth columns zero, i.e. X(0) must
have the form

X(0) =




0 0 0 0
x21 −1 x23 0
0 0 0 0

x23 0 x43 −1


 , (45)

where we have already accounted for the symmetry conditions set out by equation (43).
Therefore, we have the three parameters x21, x23, x43 to impose boundary conditions on the
right end of the multilayer.

So far we have only used the Φ basis. Now we wish to express the Green function through
the F basis. It is easy to see that

(�(m)(z))−1 = A(m)
(
F(m)

up (z)
)−1

, (46)

and thus

h(m)(z′) = (A(m))−1X(m)(�(m)(z′))−1
2 = (A(m))−1X(m)A(m)

(
F(m)

up (z′)
)−1

2 . (47)

Therefore, we can write

G↑(z > z′) = F(n)
up (z)

((
F(m)

up (z′)
)−1

2 + h(m)(z′)
)

= F(n)
up (z)

((
F(m)

up (z′)
)−1

2 + (A(m))−1X(m)A(m)
(
F(m)

up (z′)
)−1

2

)
= F(n)

up (z)
(
I + (A(m))−1X(m)A(m)

)(
F(m)

up (z′)
)−1

2

= F(n)
up (z)

(−(A(0))−1P2(X(0))T P2A(0)
)(

F(m)
up (z′)

)−1
2 , (48)

where we have used equation (41) and definition (32) in the last line.
Now we assume a special form for the fundamental matrix F(N). Note that equation (45)

for the matrix X(0) was obtained without any assumption concerning the matrix A(0) and
consequently we are free in the choice of F(N). We demand that F(N) be identical to Φ(N)(z).
In this case, as is seen from equation (48), the proper boundary conditions are justified if the
matrix

V ≡ A(0)−1L2X(0)T L2A(0) (49)

has the following form:

V =




V11 V12 V13 V14

0 0 0 0
V31 V32 V33 V34

0 0 0 0


 . (50)
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Solving the matrix equation (49) we find that

V =




−1 V12 0 V14

0 0 0 0
0 V32 −1 V34

0 0 0 0


 (51)

and

A(0) =




a11 −a11V12 − a13V32 a13 −a11V14 − a13V34

a31x23 + a11x21 a22 a33x23 + a13x21 a24

a31 −a31V12 − a33V32 a33 −a31V14 − a33V32

a11x23 + a31x43 a42 a13x23 + a33x43 a44


 (52)

The matrix A(0) ensures the correct boundary conditions for z → ∞. This specific form of A(0)

must be compatible with our choice of basic functions (16). Our choice F(N)(z) = Φ(N)(z)

requires that A(N) be the identity matrix. Then the relation

T(0,N)A(N) = A(0) (53)

gives a set of equations for the matrix elements of A(0) which we consider below.
Taking the product of T(0,N) and the first and the third columns of the matrix A(N) in

equation (53), we obtain

T(0,N)




1
0
0
0


 =




a11

a31x23 + a11x21

a31

a11x23 + a31x43


 (54)

and

T(0,N)




0
0
1
0


 =




a13

a33x23 + a13x21

a33

a13x23 + a33x43


 . (55)

The first and third lines in equations (54) and (55) imply that

a11 = T11, a31 = T31, a13 = T13, a33 = T33. (56)

where a superscript of (0, N) is implied on all the Tij . The second and fourth lines in equations
(54) and (55) form a system of linear equations:

x23T31 + x21T11 = T21, x23T11 + x43T31 = T41

x23T33 + x21T13 = T23, x23T13 + x43T33 = T43
(57)

From equation (57), we can determine the unknown elements of the matrix X(0). The first
three can be solved explicitly giving

x43 = T11T13T21 − (T11)
2T23 − T13T31T41 + T11T33T41

−(T31)2T13 + T11T31T33
,

x21 = T23T31 − T21T33

T13T31 − T11T33
, x23 = T13T21 − T11T23

T13T31 − T11T33
.

(58)
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The last equation in (57) forces a condition of compatibility for the solutions in (58):

−T13T21 + T23T11 − T33T41 + T43T31 = 0, (59)

where we have used equations (27) and (32) to simplify the expression.
Now we need to find the matrix elements of V. Taking a product of T(0,N) and the second

and the fourth columns of A(N) in equation (53) we find

T(0N)




0
1
0
0


 =




−T11V12 − T13V32

a22

−T31V12 − T33V32

a42


 , (60)

and

T(0N)




0
0
0
1


 =




−T11V14 − T13V34

a24

−T31V14 − T33V32

a44


 . (61)

Using these equations we obtain(
V12

V32

)
= 1

T11T33 − T13T31

(
T32T13 − T12T33

T12T31 − T11T32

)
(62)

and (
V14

V34

)
= 1

T11T33 − T13T31

(
T13T34 − T14T33

T14T31 − T11T34

)
. (63)

Thus, we have constructed the matrices A(0), V and X(0) and thereby solved the problem.

5. Conclusion

We have proposed a constructive way to build a symmetric one-electron GF for the magnetic
multilayer with magnetization in the plane of the layers. To build this GF we solved the
following problems: finding the solution of the systems of differential equations (7) and (8) of
general form; matching the solutions on the interfaces; imposing proper boundary conditions
and employing free parameters to get a symmetric function with respect to permutation of the
variables z → z′ and σ → σ ′. Our consideration is valid for complex wave vectors (17) which
allows for extending this method to systems with insulating layers. Also our consideration
can be applied to systems with finite lateral dimensions like magnetic nanowires [12].

Note that the described matching procedure, as well as the procedure providing for
the boundary conditions, can be applied for a layer potential which differs from the usual
rectangular potential. In contrast, the possibility of imposing some symmetry condition
requires additional investigation. For our consideration the equalities (27) and (28) were
essential. The validity of these equalities is based upon the specific form of basic functions.

The proposed GF is useful for the investigation of electronic transport properties of
magnetic multilayers. Though our consideration was performed for specific boundary
conditions which are typical for current-perpendicular-to-plane geometry, the proposed
approach can be applied to a multilayer of finite transverse dimension with zero boundary
conditions on the outer interfaces.
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